A six year, MBIE funded research and development program

Main aim is to help industry create economic value for NZ

- Exports increased by $100 M by 2020
- Displacement of imports, reduction of environmental impact

Achieve by processing of low value by-product and waste streams derived from the processing of primary products
Why the BPA was established

Secondary products from biological industries worth $2.4 billion per year, but...

- 50-55% of fish harvest converted to fish meal
- ¼ to ½ of mussel harvest goes to waste
- 15% of wood harvest is left in the forest
- 45% of kiwifruit harvest unsuitable for export
• ‘Best team’ and ‘best equipment’ approach
• BPA also draws on expertise from universities, private industry and other R&D organisations
 • Massey University & Waikato Innovation
• Connect people with related interests
To achieve its objective the BPA would like to connect with companies that:

- generate volumes of low value streams from primary production and processing;
- are interested in new technologies that could make better use of these low value streams (covers both equipment suppliers and specialist processing companies); and/or
- are interested to take low value streams and add value to them (e.g. biopolymer manufacturer)
Four key areas of focus for the BPA

• Extraction – direct recovery of high value, low volume constituents
 – *e.g.* bioactive peptides, lipids or antioxidants for functional foods, nutraceuticals

• High Value Processing – to transform functionality
 – *e.g.* to produce food products, animal feeds

• Deconstruction – pulling things apart
 – *e.g.* convert bulk residual materials to recover simple chemicals (e.g. acetate), nutrients (e.g. for fertilizers) and energy

• Reconstruction – putting things together
 – *e.g.* combining functionalised bulk materials to produce biopolymers or novel biocomposites

• Tech transfer – economic evaluation, pilot plant, scale-up
Partner sector and expertise

- **AgResearch**: Agricultural sector
 - Agricultural, dairy, meat, wool, animal feeds
- **Callaghan Innovation**: Industrial/Manufacturing Sector
 - Processing, pilot plant (tech transfer), extraction, fermentation, automation
- **SCION**: Forestry and forest products
 - Wood processing, pulp & paper, biopolymers, biofuels, modelling
- **Plant & Food Research**: Horticultural, Seafood and Food Sectors
 - Marine, horticultural, food, bioactives, nutrition
- *Universities and other R&D providers provide additional expertise*
Sectors and by-product/waste streams

- Horticulture (Fruit, Vegetable, Plant)
 - *Seconds, harvesting waste, processing plant waste*
- Agriculture (Meat, Dairy, Wool, Skins)
 - *Farm waste, processing plant, waste water, rendering*
- Marine (Fish, Aquaculture, Seaweed)
 - *Processing plant, by-catch, nuisance species*
- Forestry
 - *Bark, slash, sawdust, pulp & paper, treated timber waste*
- Microbiological
 - *Brewing waste, waste treatment*
- Depends on where in value chain you sit
- Providing raw material or developing exclusive technology

Raw material provider → Processor of raw material → Seller of products or ingredients → Channel to market
Types of projects

• BPA-led infrastructure projects
 – Virtual pilot plant
 – Decision making framework
• Industry led new product/process projects
 – Feedstock provider
 – Product manufacturer
 – Technology supplier
• University led underpinning science projects
 – MSc and PhD projects
 – Additional expertise
Infrastructure: Virtual Pilot Plant Network

- 44 Pilot plants identified & described
- 22 Of which held within BPA
- 8 University or NZFIN hosted
- 14 Private sector

- Additional 7 significant expansions or new facilities are planned
- Other privately held plants identified
- Keen to understand what industry suppliers of equipment and expertise can offer
Virtual Pilot Plant Network

https://vppn.bioresourceprocessing.co.nz
Virtual Pilot Plant Network
BPA partner and capability case studies

- AgResearch: **processing of yeast fermentation broths**
- Plant & Food Research: **extracting bioactives from horticulture streams**
- SCION: **processing of organic waste to produce biopolymers**
- Callaghan Innovation: **Avocado pomace waste to high value powder**
• **Post-farm gate:**
 – Knowledge of meat, wool and dairy processing technologies and their influence on bioresource properties.
 – Protein/lipid science – characterisation, modification, bioactive efficacy, etc.
 – Pilot plants and chemical/process engineering.

• **On-farm:**
 – Animal feeds – ruminant nutrition.
 – Fertiliser/nutrient losses.
• Waste/co-product stream: Applicable to many; current focus is yeast-rich brewing waste (‘trub’).
• Problems to solve:
 – High BOD/COD wastes; cost of disposal
 – Some existing uses, often low value
• Approach: Extraction/deconstruction, generating two streams: DNA and high-quality protein.
 – DNA – bio-based industrial chemical
 – Protein – nutrition, food ingredient
• Status: Proof-of-concept
• Forest industry
 – Wood, fibre processing
 – Fuels and chemicals
• Biopolymers and composites
• Waste conversion
• Fermentation technology
• Techno-economic modelling
Scion example: Organic waste to biopolymers

Progress – Business case development for Pilot scale production
Nutrient analysis and bioactivity testing (*in vitro*, animal and human)
Human sensory perceptions and consumer purchasing decisions
Extraction and characterisation of bioactive compounds from plant and seafood raw materials, e.g.
- Proteins, peptides and lipids from seafood harvesting and processing discards
- Polyphenol extracts and compounds from fruit and vegetable side streams
Process scale-up and transfer to commercial partners
Development and market testing of prototype ingredients for food and nutraceutical products
Example: Extracting value from marine resources

PFR, AUT, Callaghan Innovation

• Co-product/waste stream:
 Undaria pinnatifida – an introduced seaweed growing in NZ waters, and found as a pest on Greenshell™ mussel lines

• Opportunities:
 food (wakame); food ingredient; dietary supplement; animal feed

• BPA work to date:
 – Document growing patterns and seasonality
 – Develop analytical methods to characterise raw materials and extracts
 – Evaluate commercial options for harvesting, transport and storage
 – Determine what affects yield and quality

• Progress: Feasibility study by industry partner
Example: Extracting value from horticultural side streams: PFR, Massey University

- Co-product/waste stream: onion skins
- Opportunities: food ingredient; dietary supplement ingredient
- BPA work to date:
 - Explore commercial potential
 - Analyse raw material streams and characterise valuable components
 - Develop industry-ready extraction processes
 - Demonstrate bioactivity and value
- Progress: Project development by researchers and industry partner
• **Product and Process Development**
 – Nutraceuticals, functional foods
 – Extraction and purification technologies (esp. supercritical)
 – Bioprocessing: Fermentation & enzyme pre-and post processing
 – General chemical engineering (freezing, drying, grinding etc)
 – Specialist chemical and biochemical analysis

• **Scale up and tech transfer**
 – Pilot to pre-commercial scale including the FoodBowl
 – Secondments and industry placements

• **Automation**
 – Specialist equipment design
 – Sensing and control
Example: Further processing of horticultural streams

- Waste streams – avocado pomace
- Opportunity – dry powder for foods & cosmetics
- BPA & partner work:
 - Control sterility, degradation
 - Optimise drying technology
 - Develop new opportunities for products from skins and stones
- Progress – powder product undergoing commercialisation, first sales already made!
Frequently asked questions

• Is the BPA a funding organisation for private companies?
 – No, funding goes to the BPA Partners and their research Partners for their part in the R&D work

• How much funding do I need to put in?
 – Depends on the stage of the project

• Who owns the IP?
 – Depends on the industry partner interests, proprietary knowledge, co-investment in a project, and who is best placed to manage the IP to create value for NZ Inc
Workshop Follow Up - Contact Details

Anna Yallop
General Manager Bioresource Processing Alliance
Email: anna.yallop@bioresourceprocessing.co.nz

Catherine Andrews, Senior Business Development Manager
Email: catherine.andrews@callaghaninnovation.govt.nz
Thank you!
Virtual Pilot Plant Network

Industry

- Food & beverage
- Textile (*i.e.* wool)
- Biochemicals (*i.e.* biofuels)

Natural products

- Pharmaceutical
- Timber

Horticulture (*i.e.* crops)

- Energy (*i.e.* solid energy)
- Waste products (*i.e.* sludge)

Water removal

- Freeze drying
- Spray drying
- Tray drying
- Dehumidifying
- Evaporation
- Fluid bed drying

Separation

- Liquid ext.
- Supercritical ext.
- Centrifugation
- Membrane filtration
- Chromatography

Thermal proc.

- Cooking
- Freezing
- Hydrothermal
- Combustion/pyrolysis/gasification
- Environmental chamber
- Over/furnace/kiln
- Heat exchange

Auxiliary proc.

- Pelletizing
- Packaging
- Granulation
- Milling/grinding
- Blending/mixing/homogenising
- Extrusion
- Coating
- Pressing
- Dyeing
- Briquetting
- Spinning
- Post harvest
- Electrospinning
- Pulping

Biotechnology

- Fermentation
- Chemical processing
- Enzymatic
- Pharmaceutical

Sterilization

- High pressure proc.
- Pasteurisation
- Autoclave
- Pulse electric field
Virtual Pilot Plant Network

Enquiries received (before launch)

<table>
<thead>
<tr>
<th>Enquiry by</th>
<th>Request</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPA member</td>
<td>Small-scale continuous flow centrifuge</td>
<td>Three potential units identified at CI, SCION, P&FR. Contact details provided</td>
</tr>
<tr>
<td>BPA member</td>
<td>Solvent evaporation</td>
<td>Three potentially suitable units identified. Specification and contact details provided</td>
</tr>
<tr>
<td>BPA member</td>
<td>Pasteurisation</td>
<td>Various options identified. Some potential lack of appropriate scale noted</td>
</tr>
<tr>
<td>Database participant</td>
<td>Hammer Mill</td>
<td>One suitable unit identified, contact details provided</td>
</tr>
<tr>
<td>BPA project partner</td>
<td>Mobile pasteurisation unit</td>
<td>Not identified</td>
</tr>
<tr>
<td>Survey Respondent</td>
<td>Pulsed electric field</td>
<td>Two potentially suitable units identified. Specification and contact details provided</td>
</tr>
<tr>
<td>BPA member</td>
<td>DAF</td>
<td>Not identified</td>
</tr>
<tr>
<td>BPA member</td>
<td>Cheese Press</td>
<td>One identified, contact details provided</td>
</tr>
<tr>
<td>BPA member</td>
<td>Continuous centrifuge, no scale or specific capability at first requested. Processing cost requested</td>
<td>Various options identified within BPA. More information requested, numerous contacts provided with information on scale and capability where available</td>
</tr>
</tbody>
</table>